Summary: Final Report for Valeo Engine Cooling for External Corrosion Protection for Copper/Brass Heat Exchangers Using Electrochemical Deposition Coating (EDC)

SUMMARY: Using 112 copper brass radiators in this study, this report presents the corrosion, heat transfer, and durability test results on 5 different radiator designs. The report clearly shows the advantages of Electrochemical Deposition Coating (EDC) to substantially increase the life of copper brass radiators with negligible reduction in heat transfer performance. In addition, special tests were performed on gaskets, plastic tanks and solders in order to determine any detrimental effects occurring as a result of the required curing temperatures, between 360° F and 400° F.

I. INTRODUCTION: Extreme increases in the use of salt for snow and ice removal on roads and increased atmospheric pollution from both automobiles and other sources have created a much more severe corrosion environment for automotive radiators. As a result, corrosion problems in copper brass radiators, which previously occurred primarily in severe marine environments, are occurring in increasing ranges of geographical areas.

II.

There has been little information available on the use of coatings to reduce copper brass radiator corrosion. Growing evidence exists that radiator corrosion, and fin corrosion in particular, are occurring more frequently as a result of an increasing presence of acidic gases in the air, some of which come from catalytic converter systems. There is evidence that solder and brass corrosion may occur in a neutral environment containing salt, while fin corrosion becomes more severe if other factors such as acidity and sulfur compounds are present.

The cause of corrosion is the contact of materials with different electrochemical potentials in the presence of a corrosive environment. For instance, the electrochemical potentials of the main components of copper brass radiators are:

Tin =	-0.136 V/SHE
Lead =	-0.122 V/SHE
Iron =	-0.045 V/SHE
Copper =	+0.344 V/SHE

V/SHE = Volts/Standard Hydrogen Electrode

There is a significant difference between the electrochemical potential values between these metals. The corrosion resistance requirements, as per Customers Engineering Standards, call for exposure to Neutral Salt Spray Fog, ASTM B117-85. Normally, there are two criteria, the functional, where some customers require only 240 hours with no leaks. (Other customers require 1,680 hours with no leaks.) The other criteria is aesthetic, which normally consists of 96 hours with less than 20% visible corrosion. There are three methods for corrosion protection:

1) To isolate the materials from the environment (surface coatings).

2) To reduce the corrosion potential difference between the metals in contact (tin/lead rich fins).

3) To contact the metal to be protected with another having a lower corrosion potential (zinc rich fins).

Usually the least expensive type of coating to make the radiator look black was considered satisfactory. In some cases low-cost coatings tend to hold contaminants in place and provide areas for corrosive materials to accumulate, so they actually make the corrosion problem more severe.

Techniques for corrosion prevention have been advancing rapidly. Radiator designs have been developed that utilize tin-lead (Valeo Zaragoza) or zinc rich fins (Outokumpu patent) and different conversion coatings applied by spraying or immersion (Brugal process by Valeo Italy), and Electrochemical Deposition Coating (EDC). These corrosion protection technologies have made inroads into the copper brass radiator industry. However, it has been recognized that the ideal corrosion protection system meets the following criteria:

1) Extend the life of copper brass radiators, especially in severe environments, to a 10year life,

2) Achieve the best durability for the least cost,

3) Be processed using currently available technology,

4) Present minimal environmental, health, and safety problems, both in application, and during repair of the units,

5) Have a minimal impact on the rate of heat transfer, and

6) Be processed at temperatures that do not adversely affect solder, gaskets, and plastic tanks. (Because of the wide variety of materials used in solders, gaskets and plastic tanks, individual determinations must be made based upon the following process temperatures for EDC: Temperatures fluctuate between 360° F and 400° F for approximately 25 minutes.)

Within the currently available technologies, EDC meets all the aforementioned criteria.

II. ELECTROCHEMICAL DEPOSITION COATING (EDC): EDC is a process

where black epoxy is applied electrically inside a dip tank. Epoxy particles are charged positively and are attracted to the negatively charged radiator. Under an applied electrical field, the positively charged particles migrate to the negatively charged surfaces on the radiator, forming a coherent film with excellent mechanical adhesion (Cross Hatch Adhesion: 4B to 5B by ASTM D3359-93). As the film builds to a thickness of between 0.8 mils and 1.2 mils, the radiator becomes insulated and restricts further deposition. EDC thickness varies no greater than 0.4 mils, or less than 0.0005".

II.A. ADVANTAGES OF EDC: The process is automated. The EDC has very good physical and chemical resistance properties, and it possesses excellent appearance. It has exceptional capacity to reach hidden areas and cover 99.5+% of all surface area. Any metal can be treated using the same EDC solution, and only conductive areas are coated. (Plastic tanks, gaskets, etc. are not coated.) EDC is water borne, and therefore considered an environmentally green process. EDC has received a military specification number and is approved for used by the National Science Foundation (NSF). Of all the processes investigated, EDC provides the best relationship between durability and cost.

III. TESTING PROCEDURE: One hundred and twelve radiators were used. Table 1 shows radiator designs, sample size, and test procedure. Sixty (60) samples were coated using EDC, and the remaining samples were tested as reference for evaluation against the EDC units.

III.A. CORROSION: The goal of these tests is to provide additional information on corrosion testing results from those previously reported (REP Road Environment Pollutant Solution. Accelerated corrosion test), and compare test results with a base line. Salt Spray, Compound Cycle and SWAAT (Sea Water Acetic Acid Test) tests were performed. See Table

2 and Table 3.

These are the reference tests currently applied in USA and Europe. The tests are:

i) S.S.: Neutral Salt Spray ASTM B 117 - 85 to failure.

ii) Compound Cycle: Honda Specification. Cycle: 5.5 Hours of Na Cl (5 %) solution spray at 35°C (95°F), 0. 1 Hour ramp time to 24°C (75°F), 1.3 Hour of 24°C (75°F) forced air circulation, 0.1 Hour ramp time to 50°C (122°F), 14.5 Hours of 50°C (122°F) 95 % humidity, 2 Hours of 50°C (122°F) air drying, 0.5 Hour ramp time to 35°C (95°F), Total: 24 Hours = 1 Cycle.

iii) SWAAT: Acidified Synthetic Sea Water (Fog) Testing, ASTM G-85-85 A3 to failure.

III.B. HEAT TRANSFER & AIR PRESSURE DROP: According to Chrysler standard PF-7435/8733. Two points air velocity: 10 and 20 miles/hor (16.1 and 32.2 Km/hour). See Table 4.

III.C. DURABILITY TESTS: Pressure and thermal cycling, along with cold aging, were performed in order to determine detrimental effects of curing temperatures on gaskets, plastic tanks, and solders. See Tables 5, 6, and 7.

III.C.1. PRESS	URE CYCLE. THERMAL CYCLE. COLD AGING.
PRESSURE CYC	LE:
Test Conditions:	0-20 lb/in ² g (0- 1388 KPa), 4 cycles/min.
Solution:	100 % Ethylene Glycol
Temperature:	$121^{\circ}C(250^{\circ}F)$
No. Cycles:	36,500
Test Criteria:	No leaks air under water at 20 lb/in ² g (138 KPa).
THERMAL CYCLE	
Test Conditions:	4 - 6 lb/in ² g (28 - 41 KPa), 12 cycles/hour.
Solution:	City water
Temperature:	13º - 91ºC (55ºF - 195ºF)
No. of Cycles:	12,400
Test Criteria:	No leaks air under water at 20 lb/in ² g
COLD AGING	
Test Conditions:	20 lb/in ² g, constant
Solution:	50/50 glycol/water mixture
Temperature:	-29°C (-30°F) for 15 hours

Cycle:	Ramp to 118°C (245°F) over 1.5 hrs
	118°C (245°F) for 6 hrs
	Ramp to -29°C (-30° F) over 1.5 hrs
Length:	21 days
Results:	No leaks air under water at 20lb/in ² g (138 KPa)

III.C.2. Physical and Mechanical tests on Gaskets, and Plastic Tanks: Test matrix and results are given in Tables 5 and 6.

III.C.3. Tensile Test on Solders: Test matrix and results are given in Table 7.

III.C.4. Tensile Strength Test Results on Tube/Header Joint Samples: Test results are given in Table 8.

Radiator	Surface	Sample	Corrosio	n		Heat Tra	insfer	Pressure	Thermal	
Туре	Condition	Size	S. S. SW	AAT		Air Pres	sure Drop	o Cycle	Cycle	Cold
										Agin g
28.6"w x 185"h 1 Row, 20 fpi	Unpainted Standar	rd Paint	4	4	2	2	2	2 2	2	4
Plastic Tanks	EDC			16		3	4	3	10	6
24.1"w x 21.5"h 2 Row, 21 fpi. Brass Tanks	Unpainted Standard Paint EDC		4 4	16	2 2	3	2 2 6	2 2 3	10	4 4
18.0"w x 24.0"h 2 Row, 12 fpi	Unpainted Standar	rd Paint	10	10	2	2	2	2 2	6	6
Brass Tanks	EDC			14		3	0	6	4 6	
19-5"w x 36.5"h 3 Row, 13 fpi	Unpainted Standard Paint		0	7	0	2	0	0 2	3	0
Plastic Tanks	EDC			10		2	4	3	2 2	
26.1"w x 29.9"h 3 Row, 15 fpi Brass Tanks	Unpainted Standard Paint EDC		0 1 1		1 1					

Table 1. Test Matrixof Radiator Units Used in Test.

Table 2. Corrosion Test Results: Test Days to Failure,Using 3 Test Methods:Salt Spray, Compound Cycle, and SWAAT

Radiator Type	Surface		Sample	>>Corrosion Test: Days To		
Fanure<<	Condition	Size	Salt Spray	Compound Cycle	SWAAT	
Core Size: 18.0"w x 24.0"h 2 Row	Unpainted Unpainted	6 6	4 days 4 days	7 days 8 days	6 days 7 days	
12 fpi Brass Tanks	Std Painted	6 6	4 days 4 days	6 days 7 days	4 days 4 days	
	EDC	11	21days 37 days 131 days 101 days 101 days	47 days 131 days 131 days	15 days 9 days 5 days	
Core Size: 19.5"w x 36.5"h 3 Row	Std Painted	2	4 days 6 days			
13 fpi Plastic Tanks	EDC	4	35 days 55 days	48 da 48 da	ays ays	
Core Size: 16.5"w x 23.0"h 1 Row 24 fpi Plastic Tanks	Treated with Brugal, then Painted	4	26 days 26 days	24 days 36 days		
Core Size: 26.0"w x 29.8"h 3 Row, 15 fpi, Br	EDC cass Tanks	1	141 days			
Core Size: 28.6"w x 18.5"h 1 Row	Unpainted	4	9 days 12 days		12 days 15 days	

20 fpi	Std Painted	4	6 days	11 days
Plastic Tanks			7 days	11 days
	EDC	6	188 days	34 days
			188 days	45 days
			161 days	52 days
Core Size:	Unpainted	4	6 days	5 days
24.1"w x 21.5"h			6 days	10 days
2 Row	Std Painted	4	3 days	10 days
21 fpi			6 days	12 days
Brass Tanks	EDC	6	159 days	30 days
			145 days	32 days
			102 days	44 days

Table 3. Corrosion Test Results: Hours to Failure,Using 3 Test Methods:Salt Spray, Compound Cycle, and SWAAT

Radiator Type	Surface	>>Corrosion Test:	Hours to Failure<	<<
	Condition	S.S. Comp	ound Cycle SWAA	ΔT
18"w x 24"h	Unpainted	96 hrs	180 hrs	156 hrs
2 Row, 12 fpi	Std Painted	96 hrs	156 hrs	96 hrs
Brass Tanks	EDC	2904 hrs	2472 hrs	360 hrs
19.5" x 36.5"h	Unpainted			
3 Row, 15 fpi	Std Painted	120 hrs		144 hrs
Plastic Tanks	EDC	1080 hrs		1152 hrs
16.5"w x 23"h	Treated with			
1 Row, 24 fpi	Brugal and	624 hrs		720 hrs
Plastic Tanks	Painted			
26"w x 29.8"h	Unpainted			
3 Row, 15 fpi	Std Painted	120 hrs		
Brass Tanks	EDC	3384 hrs		
28.6"w x 18.5'	'Unpainted	252 hrs		324 hrs
1 Row, 20 fpi	Std Painted	156 hrs		264 hrs
Plastic Tanks	EDC	4296 hrs		1048 hrs
24.1"w x 21.5'	'Unpainted	144 hrs		420 hrs
2 Rows, 21 fpi	Std Painted	108 hrs		264 hrs
Brass Tanks	EDC	3248 hrs		848 hrs

According to the results in Tables 2 and 3, we can expect an increase in radiator life by a factor of between 9 and 30 in Salt Spray, and 3 to 8 times the life in SWAAT.

IV. Table 4 shows the results on the heat transfer performance and air pressure drop, comparing unpainted and painted radiators to EDC radiators. Maximum deviations were

about 1.4 % lower in relation to unpainted samples. The EDC radiators performed better than the standard painted radiators.

Table 4. Heat Transfer andAir Pressure Drop

Table 4. Heat Transfer Results. Hn = Heat Transfer in BTU/min/of, dP = Air Pressure drop in inches of water. CL6 = Heat Transfer divided by the sixth root of the pressure drop. Air Velocity = 20 and 10 miles/hour.

Radiator Type	Surface		Sampl	e	Hn20	Hn10	dP20	dP10	CL6:20 CL6:10
	Condition	Size			P20	DPIO			
28.6 x 18.5	Unpa	inted	4	22.54	15.87	0.872	0.324	23.06	19.16
1 Row, 20 fpi	Painted		4	22.44	15.90	0.878	0.327	22.94	19.16
Plastic Tanks.	EDC	10	22.52	16.12	0.937	0.347	22.77	19.24	
Comparison	vs. U	npainted	L	-0.09	1.58	7.45	7.10	-1.26	0.42
% Difference	vs. Painted		0.36	1.38	6.72	6.12	-0.74	0.42	
24.1 x 21.5	Unpa	inted	4	36.05	22.89	1.899	0.733	32.4	24.09
2 Row, 21 fpi	Painted		4	36.19	22.95	1.943	0.727	32.4	
									24.17
Brass Tanks	EDC		10	36.28	23.03	2.016	0.766	32.28	24.08
Comparison	vs. Unpainted			0.64	0.61	6.16	4.50	-0.37	-0.04
% Difference	vs. Painted		0.25	0.35	3.76	5.36	-0.37	-0.37	
18.0 x 24.0	Unpa	inted	6	21.03	14.62	0.824	0.284	21.72	18.02
2 Row, 12 fpi	Painted		6	20.03	13.55	0.845	0.271	20.6	16.85
Brass Tanks	EDC		6	20.76	14.43	0.841	0.287	21.37	17.77
Comparison	vs. U	npainted	L	-1.28	- 1.30	2.06	1.06	-1.61	-1.39
% Difference	vs. Painted		3.64	6.49	-0.47	5.90	3.74	5.46	
19.5 x 36.5	Unpa	inted	3	36.49	23.19	1.949	0.696	32.65	24.64
3 Rows, 13 fpi									
Plastic Tanks	EDC	3	36.24	22.98	1.988	0.716	32.32	24.29	
% Difference			-0.69	-0.91	2.00	2.87	-1.01	-1.42	

IV.A. As to all durability tests, pressure cycling, thermal cycling, and cold aging, all test samples of gaskets, plastic tanks, and solder met the specified requirements. No samples were found to leak at 21 lb/in² g air under water.

See Tables 5, 6, and 7.

Table 5. Durability Tests for EPDM Gaskets Before and After EDC Process

TEST	Sample		>> Con	dition<	Chrysler >>Average			
	Size	Before Cure/(/After/ Cure/D	'After 7 ays*	MS-BF54 Specification	Result Before Cure/(s<< /After/ Cure/Da	After 7 ays**
Hardness, ASTM D2240-86. Shore A, Pts.	6	6 pts/6	5 pts/10) pts	53 - 85	62	62	61
Tensile, ASTM D412-87	24	6	6	6	10 MPa, Min 1,450 lbf/in²	1,479 lbf/in ²	1,464 2 lbf/in ²	1,452 lbf/in²
Elongation	24	6	6	6	275 % Min	320%	296%	278%
Compression Set ASTM 395-89, 70 Hours @ 125% (257°F) Method B	12 C	3	3	3	25 % Max	0.102" 18.9%	0.083" 10.8%	0.091"
Fluid Aging, 55% Distilled Water 45% Ethylene Glyco 168 hours at 125°C and 137.8 KPa at 20	24 l (257°F) psi. ASTM D471	6	6	6	Durometer Max Loss: 7 pts Tensile and Elongation Max Loss: 10%	H: 64 T:1,396 lbf/in ² E:294%	H: 64 T:1,367 lbf/in ² E:284%	H: 66 T:1,356 lbf/in ² E:290%

* Immersed in EDC liquid ** Immersed in EDC liquid

Table 6. Durability Tests for Thermoplastic Nylon 6/6,Glass Fiber Reinforced Plastic TanksBefore and After EDC Process

TEST	Sample	>>Condition<<			<	Chrysler			
	_				>>Average Re	esults<<	:		
	Size	Before	After	After	7 MS-BF	`54	Before	After	
						After 7	7		
		Cure	Cure	Days Expos	Specification ed	Cure	Cure	Days	
				- To ED Liquid	С		Expose To ED Liquid	ed C	
Tensile Strength ASTM D638	18	6	6	6	25,960 Min lbf/in²	26,789 lbf/in²	26,005 lbf/in²	25.965 lbf/in²	
Elongation & Break ASTM D638	18	6	6	6	3 % Min	3.8%	4.7%	3.5%	
Tensile Strength 7 Days Condition Tensile Bars in 5 Solution of Ethyle	18 .ing 0/50 ene Glycol/	6	6	6	40 % Min Retention Of the Tensile at 132	14,475 lbf/in ² Origina Value °C (270°	14,400 lbf/in ² l Water PF)	14,200 lbf/in ²	

According to the results in Table 5 and 6, all tested rubber gaskets and plastic tank sample sections met the Chrysler specification requirements. These requirements were met even under extreme conditions, i.e., leaving the samples immersed in the EDC liquid for 7 days.

Table 7 shows the most common composition of the solders used for

current production, and their respective melting temperatures.

Table 7. Melting Temperature of Solders Most Commonly Used In Radiator Production

Joint	Solder Composition Tin/Lead Wt $\%$	Melting Temperature		
Fin/Tube	5/95	320°C (608°F)		
Tube/Header	50/50	210°C (410°F)		

The solder composition presenting the lowest melting point (eutectic) is 61.9 % Tin/38.1 % Lead, it melts to 183°C (362°F). Since the melting point of the solder composition 5 % Tin/95 % Lead is far enough from the curing temperature of EDC at 177°C (360°F), no tensile tests were performed on these radiator sections.

Tensile tests were performed on tube/header sections from two different radiators designs. A Tinius Olsen constant deformation speed LC-B 10,000 Lb capacity tensile tester was used for this purpose. The tensile rate was 0.3 in/min (7.5 mm/min). Refer to Table 8.

Table 8. Tensile Strength Test Results on Tube/Header Joint Samples

Tube Dimensions	Sample Size	U.T.S.* in psi Before	After
Thickness = 0.009" Width = 0.708"	12	53,641	50,863
% Reduction		5.2	%
Thickness = 0.0063 " Width = 0.63 "	12	49,570	46,957
% ReductionU.T.S. = Ultimate Te	ensile Strength	5.2'	7%

According to the test results in Table 8, none of the samples failed in the soldered joint which means that, even after the EDC process, the soldered joints remain stronger than the tube material. The tube material suffered only a slight reduction in its mechanical properties.

V. Conclusions:

1) The corrosion tests on the EDC samples showed significant improvement in corrosion resistance of copper brass radiators. (More than 3,000 hours functionality and 1,000 hours aesthetics.)

2) The EDC process offers significant advantages over other corrosion protection techniques for the best relationship between durability/cost.

3) The heat transfer performance and air pressure drop were slightly diminished after the EDC process; however, test results show these losses in heat transfer and air pressure drop were not as significant as the losses encountered using standard paint samples.

4) The durability tests performed on these radiators, and the special tests performed on gaskets, plastic tanks, and solders, showed no detrimental effects on these parts after submitting radiators to EDC curing temperatures of 177°C (360°F) for 25 minutes. Even under extreme conditions (that would not be found in the EDC process, i.e., soaking parts for 7 days in the EDC liquid), no significant, detrimental effects could be observed or measured.

5) According to the above presented results, the EDC process can extend the life of a copper brass radiator significantly beyond the life achieved with current coatings, with a 10-year life sought by automotive manufacturers as the ultimate goal.